

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 6031-6034

Fluorescence quenching of parallel-stranded DNA bound ethidium bromide: the effect of 7-deaza-2'-deoxyisoguanosine and 7-halogenated derivatives

Hong Li, Xiaohua Peng and Frank Seela*

Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastraße 7,
D-49069 Osnabrück, Germany

Center for Nanotechnology, Gievenbecker Weg 11, 48149 Münster, Germany

Received 11 August 2004; revised 22 September 2004; accepted 24 September 2004

Abstract—Parallel stranded (ps) duplexes were constructed by incorporating 7-deaza-2'-deoxyisoguanosine (1a) or its 7-halogenated analogs 1b,c in place of 2'-deoxyisoguanosine. UV and $T_{\rm m}$ analyses prove the high affinity of ethidium bromide (EB) to these modified duplexes. Steady-state fluorescence measurement shows that the fluorescence is quenched when EB is bound to ps duplexes containing compounds 1a-c. The quenching effect depends on the 7-substituent of the nucleobase. © 2004 Elsevier Ltd. All rights reserved.

Parallel stranded (ps) DNA can be constructed from oligonucleotides incorporating isoguanine-cytosine or guanine-isocytosine base pairs instead of the canonical guanine-cytosine pair. The dA-dT pair shows ambiguous base pairing properties and is accepted in anti-parallel stranded (aps) DNA as well as in ps DNA.² The interest in the structure and biophysical properties of ps DNAs has increased considerably in the last few years as they may offer new opportunities for designing new oligonucleotide hybridization probes, anti-sense constructs or interference RNA mimics.³ Efforts have been undertaken towards the synthesis of novel nucleosides in order to increase the duplex stability of ps DNA.⁴ Recently, our laboratory reported on the synthesis of 7-deaza-2'-deoxyisoguanosine (1a)⁵ and its analogs 1b and 1c bearing halogen-substituents at C-7 with the potential to enhance the hydrophobic character of DNA bases with substituents protruding in the major groove of DNA and to strengthen dipole-dipole stacking interaction beneficial to duplex stability.⁶ Further application of the modified nucleosides 1a-c present in

ps DNA focused our interest to molecules such as ethidium, which are bound to ps and aps DNA and can be used as site-specific reagent for foot printing reactions.⁷ Meanwhile, the photoinduced redox activities of the nucleosides 1a-c in oligonucleotide duplexes need to be elucidated because radical migration and damage of DNA have crucial implications with respect to carcinogenesis and mutagenesis.8 Ethidium bromide (EB), an intercalator, can serve as an ideal candidate to realize those goals as it is used widely for various biochemical and biophysical applications both in aps DNA and in ps DNA. 2,5 Normally, the fluorescence of EB will be increased strongly when the EB molecule is bound to duplex DNA, ¹⁰ while the excited state of EB undergoes oxidative quenching by electron transfer when 7-deaza-2'-deoxyguanosine 2 (Scheme 1) replaces the canonical DNA constituent 2'-deoxyguanosine.11 Thus, the changes in the fluorescence intensity of duplex bound EB can be used to decipher the redox activities of some modified nucleotides. Herein, we studied the photophysical properties of EB, when bound to ps duplexes containing compounds 1a-c as well as 2'-deoxyisoguanosine (3). The structure dependent quenching abilities of compounds 1a-c to the EB fluorescence are used to evaluate redox activities of the modified nucleosides. In addition, the stabilizing effect of the incorporation of compounds 1a-c into ps duplexes was investigated as well.

Keywords: DNA; Ethidium bromide; 7-Deazapurine nucleosides; Fluorescence quenching.

^{*}Corresponding author. Tel.: +49 541 9692791; fax: +49 541 9692370; e-mail: frank.seela@uni-osnabrueck.de

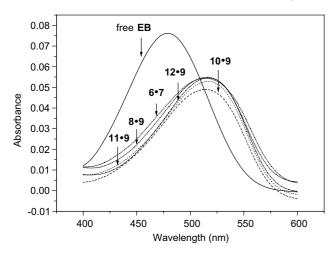
Scheme 1. Structure of modified nucleosides and ethidium bromide.

Scheme 2. Structure of phosphoramidites 4a-c and 5.

The nucleosides 1a-c and 3 were converted into phosphoramidites 4a-c and 5 (Scheme 2), respectively, as reported, 12 which are employed in the synthesis of base-modified oligonucleotides. The oligonucleotides 6–12 were prepared in a 1-µmol scale (DMT-on mode)

on an ABI 392-08 synthesizer employing phosphoramidite chemistry. Purification of the oligonucleotides was performed as described. The oligomers were characterized by MALDI-TOF mass spectra (Supplementary data). The aps duplex was designed from two single strands of alternating $d(GT)_6$ and $d(CA)_6$, which form the stable hybrid 6.7 with a $T_{\rm m}$ of 56 °C. The corresponding ps 8.9 duplex containing 2'-deoxyisoguanosine instead of dG is less stable showing a $T_{\rm m}$ value of 45 °C.

The various duplexes and the $T_{\rm m}$ values are summarized in Table 1. As can be seen, ps duplex 10·9 containing the 7-deazapurine nucleoside 1a shows almost the identical stability as the parent duplex 8·9, while the incorporation of the 7-halogenated derivatives stabilized the duplexes significantly with $\Delta T_{\rm m} = 2.5\,^{\circ}{\rm C}$ per modification for 1b and $\Delta T_{\rm m} = 2.0\,^{\circ}{\rm C}$ per modification for 1c. The most probable base pair motifs for 1a–c in the duplexes are shown in Scheme 3. When EB is present in the duplex solution the $T_{\rm m}$ value of all ps duplexes as well as aps duplex in our experiment is increased by about 1 °C. It means that intercalator (EB) is bound to the base-modified ps duplexes.


Next, the absorption properties of EB in different duplexes were studied. As shown in Figure 1, the maximum absorption of free EB in buffer solution is located at 481 nm. With the addition of DNA, no matter, which duplex is in presence, evident decrease in the absorbance of EB is observed. The hypochromism in the absorption

Scheme 3. Base pairs of ps or aps DNA containing compounds 1a-c.

Table 1. $T_{\rm m}$ values and photophysical properties for duplexes containing EB^a

Duplex EB	Emission (nm) (intensity) 590.0	Excitation (nm) (intensity) 486.8	Absorbance (nm)	T _m (°C) EB binding	
					(23.7)
5'-d(GT) ₆ -3' (6)	586.6	528.0	516.0	56	57
3'-d(CA) ₆ -5' (7)	(214.7)	(212.3)			
5'-d(3 T) ₆ -3' (8)	587.2	527.8	516.0	45	46
5'-d(CA) ₆ -3' (9)	(227.2)	(226.8)			
$5'-d(1aT)_6-3'$ (10)	587.0	527.8	515.0	46	47
5'-d(CA) ₆ -3' (9)	(17.7)	(17.8)			
$5'-d(1bT)_6-3'$ (11)	586.8	528.0	516.5	61	62
5'-d(CA) ₆ -3' (9)	(52.9)	(53.8)			
5'-d(1cT) ₆ -3' (12)	587.0	528.0	516.0	58	59
5'-d(CA) ₆ -3' (9)	(85.0)	(84.9)			

^a Measurements were performed in buffer solution of 100 mM NaCl, 10 mM MgCl₂, 10 mM sodium cacodylate, pH7.0. Melting temperatures ($T_{\rm m}$ values) were taken from the first derivative of the melting curve (A_{260} vs temperature; 20–80 °C; increase 1 °C min⁻¹) using 5.0 μM concentration of each single strand.

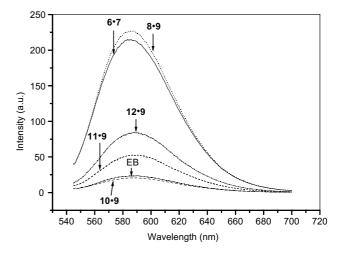


Figure 1. UV absorption spectra for free EB $(17.0\,\mu\text{M})$ and in the presence of excess of duplexes $(40.0\,\mu\text{M})$. Measurements were performed in buffer solution shown in Table 1.

spectra is due to the interaction between the electronic state of the intercalating chromophore and those of the DNA bases. Because the strength of this electronic interaction is expected to decrease with the cube of the distance of separation between the chromophore and the DNA bases, the observed large hypochromism suggests a close proximity of the EB molecules to the DNA bases. In addition to the decrease in absorption intensity, the peak position of the EB absorption band in duplex solution is shifted from 481 to around 516nm, which is a typical alteration for intercalated EB. The similar changes of EB absorption between duplexes (10.9, 11.9 and 12.9) and their parent aps and ps-duplexes (6.7, 8.9) support that EB binding properties to these duplexes are uniform.

At last, the fluorescence properties of EB in base-modified duplexes were characterized. Table 1 compiles intensities of steady-state fluorescence of EB in duplexes. In the presence of template duplexes 6.7 and 8.9, the EB fluorescence is enhanced greatly compared to that of free EB. The maxima of the emission are around 587 nm. The excitation maximum of EB is shifted from 480 (free EB) to 527 nm (duplex bound EB). When compounds **1a–c** are replacing iG_d in the ps duplex **8.9**, interestingly, the strong fluorescence of the EB/DNA complex is quenched tremendously compared to that of the EB bound to unmodified DNA (Fig. 2). Furthermore, the quenching effect depends on the halogen substituents in the 7-position of compound 1a. Without 7-halogen substituents, compound 1a quenches the fluorescence almost totally, while the 7-bromo or 7-chloro derivative shows less quenching ability in the order of 1b→1c.

Generally, the fluorescence quenching of an intercalator in DNA duplexes can be attributed to the energy transfer¹⁵ or electron transfer process. ^{11b-d} In our case, because of the lack of spectral overlap between the fluorescence of photoexcited EB and the absorption of the modified nucleosides **1a-c**, a quenching via energy

Figure 2. Fluorescence emission spectra for free EB and EB bound to DNA. The EB concentration was $0.85\,\mu\text{M}$ (buffer see Table 1). The DNA (5.00 μ M) was added in excess so that more than 95% of EB was bound

Table 2. Reduction potentials for the nucleosides 1a-c, 3 and EB*

Compound	Potential versus NHE ^a (V)
1a ^{+/0}	+0.93
1b ^{+/0}	+0.95
1c ^{+/0}	+0.97
3 ^{+/0}	+1.30
$\mathrm{EB}^{*/0}$	+1.2 ^b

^a Potentials were obtained in 0.1 M phosphate buffer, pH7.0 with a normal three electrode configuration consisting of a glassy carbon working electrode, Ag/AgCl (3.0 M KCl solution) electrode and platinum auxiliary electrode.

transfer can be ruled out. Thus, the possible mechanism of quenching of the EB fluorescence by compounds 1a-c in ps duplexes is the electron transfer from the nucleosides to EB*, which has also been found in the case of 7-deazaguanosine modified aps duplexes. 11b To support this hypothesis, we measured the oxidation potentials of **1a-c** and **3** by CV spectra. As shown in Table 2, the oxidation potential of compound 3, which is about +1.30 V versus normal hydrogen electrode (NHE), is similar to that of natural $dG^{+/0}$ (+1.29 V)¹⁶ and higher than that of EB*/0 (+1.20 V). 11b Thus, in the duplex 8.9, the electron transfer process did not happen between EB excited state and nucleoside 3, and the normal fluorescence enhancement of binding EB was observed. While for compounds 1a-c, the lower oxidation potentials (about +0.95 V) would lead to the oxidation of modified nucleosides by EB excited state in duplexes 10.9, 11.9 and 12.9. Therefore, the fluorescence of binding EB was quenched. Normally, the quenching effect of nucleosides depends on the oxidation potentials. However, nucleosides 1a-c shows different quenching ability despite of their nearly identical oxidation potentials. It might be due to the 7-substituents intervene the reaction pathway differently for nucleosides **1a–c** radical cation, which is formed during the electron transfer process.¹⁷

^b Ref. 11b.

In conclusion, ps duplexes incorporating nucleosides 1a-c, which are much more easily oxidized than their purine counterpart iso G_d , quenched the fluorescence of binding EB strongly. The quenching ability of compounds 1a-c to the EB fluorescence depends on the different 7-substituents. Further studies of quenching effect of modified nucleosides to EB fluorescence in duplexes are still under way.

Acknowledgements

We thank Dr. Yang He for the synthesis of the oligonucleotides. We also thank Monika Dubiel and Elisabeth Michalek for their kind help in the preparation of this manuscript. In addition we also thank Burghard Lutter for assistance in carrying out the CV measurements. Financial support by Roche Diagnostics GmbH is gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl. 2004.09.071.

References and notes

- (a) Seela, F.; Gabler, B.; Kazimierczuk, Z. Collect. Czech. Chem. Commun. 1993, 58, 170; (b) Sugiyama, H.; Ikeda, S.; Saito, I. J. Am. Chem. Soc. 1996, 118, 9994; (c) Seela, F.; Wei, C.; Melenewski, A.; Feiling, E. Nucleos. Nucleot. 1998, 17, 2045.
- van de Sande, J. H.; Ramsing, N. B.; Germann, M. W.; Elhorst, W.; Kalisch, B. W. V.; Kitzing, E.; Pon, R. T.; Clegg, R. C.; Jovin, T. M. Science 1988, 241, 551.

- (a) Rippe, K.; Fritsch, V.; Westhof, E.; Jovin, T. M. *EMBO J.* 1992, 11, 3777; (b) Marfurt, J.; Leumann, C. *Angew. Chem., Int. Ed.* 1998, 37, 175.
- (a) Seela, F.; Lindner, M.; Glaçon, V.; Lin, W. J. Org. Chem. 2004, 69, 4695; (b) Seela, F.; Wei, C.; Becher, G.; Zulauf, M.; Leonard, P. Bioorg. Med. Chem. Lett. 2000, 10, 289.
- 5. Seela, F.; Menkhoff, S.; Behrendt, S. J. Chem. Soc., Perkin Trans. 2 1986, 525.
- 6. Seela, F.; Peng, X. Synthesis 2004, 1203.
- (a) Yang, X.; Vologodskii, A. V.; Liu, B.; Kemper, B.; Seeman, N. C. *Biopolymers* 1998, 45, 69; (b) Hou, M.-H.; Robinson, H.; Gao, Y.-G.; Wang, A. H.-J. *Nucleic Acids Res.* 2002, 30, 4910; (c) Satz, A. L.; Bruice, T. C. *J. Am. Chem. Soc.* 2001, 123, 2469; (d) Dervan, P. B. *Science* 1986, 232, 464.
- Margison, G. P.; Santibáñez-Koref, M. F. BioEssays 2002, 24, 255.
- (a) Boger, D. L.; Fink, B. E.; Brunette, S. R.; Tse, W. C.; Hedrick, M. P. J. Am. Chem. Soc. 2001, 123, 5878; (b) Bresloff, J. L.; Crothers, D. M. J. Mol. Biol. 1975, 95, 103.
- 10. Waring, M. J. J. Mol. Biol. 1965, 13, 269.
- (a) Latimer, L. J. P.; Lee, J. S. J. Biol. Chem. 1991, 266, 13849; (b) Kelley, S. O.; Barton, J. K. Chem. Biol. 1998, 5, 413; (c) Fiebig, T.; Wan, C.; Kelley, S. O.; Barton, J. K.; Zewail, A. H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 1187; (d) Kelley, S. O.; Holmlin, R. E.; Stemp, E. D. A.; Barton, J. K. J. Am. Chem. Soc. 1997, 119, 9861.
- (a) Seela, F., Peng, X.; Li, H., in preparation; (b) Seela, F.;
 Wei, C. Helv. Chim. Acta 1999, 82, 726.
- (a) Long, E. C.; Barton, J. K. Acc. Chem. Res. 1990, 23, 271; (b) Berman, H. M.; Young, P. R. Annu. Rev. Biophys. Bioeng. 1981, 10, 87.
- Cantor, C.; Schimmel, P. R. In *Biophysical Chemistry*;
 W. H. Freeman and Company: New York, 1980; Vol. II.
- Wang, L.; Gaigalas, A. K.; Blasic, J.; Holden, M. J.; Gallagher, D. T.; Pires, R. Biopolymers 2003, 72, 401.
- Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119, 617.
- 17. Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109